Test Computation of Sha for groups of order \(256\) and \(p=2\).

We list the number of the small groups in Magma's database (past 29633, done in part 1) for which Tate-Shafarevich group is not trivial; we write its size next to it.<\ br> Note that we merely give the label of groups for which there is a normal subgroup yielding a non-trivial Tate-Shafarevich. We provide less information than previous pages merely to speed up computations ever so slightly.

=======================================================

==53039== 2

==53040== 2

==53041== 2

==53042== 2

==53043== 2

==53044== 2

==53045== 2

==53046== 2

==53047== 2

==53048== 2

==53049== 2

==53050== 2

==53051== 2

==53052== 2

==53053== 2

==53059== 2

==53060== 4

==53061== 2

==53062== 2

==53063== 2

==53064== 2

==53066== 2

==53069== 2

==53082== 2

==53083== 2

==53084== 2

==53085== 2

==53086== 2

==53087== 2

==53088== 2

==53090== 2

==53098== 4

==53099== 4

==53100== 4

==53101== 4

==53102== 2

==53103== 2

==53104== 2

==53105== 2

==53106== 2

==53107== 2

==53108== 2

==53109== 2

==53110== 2

==53111== 2

==53112== 2

==53113== 2

==53114== 2

==53115== 2

==53116== 2

==53117== 2

==53118== 2

==53119== 2

==53120== 2

==53121== 2

==53122== 2

==53123== 2

==53124== 2

==53125== 2

==53126== 2

==53127== 2

==53128== 2

==53129== 2

==53130== 2

==53131== 2

==53132== 2

==53133== 2

==53134== 2

==53135== 2

==53173== 2

==53174== 2

==53175== 2

==53176== 2

==53177== 2

==53178== 2

==53179== 2

==53180== 2

==53181== 2

==53182== 2

==53183== 2

==53184== 2

==53185== 2

==53186== 2

==53187== 2

==53188== 2

==53189== 2

==53190== 2

==53191== 2

==53192== 2

==53193== 2

==53194== 2

==53195== 2

==53196== 2

==53197== 2

==53198== 2

==53199== 2

==53200== 2

==53201== 2

==53202== 2

==53203== 2

==53204== 2

==53205== 2

==53206== 2

==53207== 2

==53208== 2

==53209== 2

==53210== 2

==53211== 2

==53212== 2

==53213== 2

==53214== 2

==53215== 2

==53216== 2

==53217== 2

==53218== 2

==53219== 2

==53220== 2

==53221== 2

==53222== 2

==53223== 2

==53224== 2

==53225== 2

==53226== 2

==53227== 2

==53228== 2

==53229== 2

==53230== 2

==53231== 2

==53232== 2

==53233== 2

==53234== 2

==53235== 2

==53236== 2

==53237== 2

==53238== 2

==53239== 2

==53240== 2

==53241== 2

==53242== 2

==53243== 2

==53244== 2

==53245== 2

==53246== 2

==53247== 2

==53248== 2

==53249== 2

==53250== 2

==53251== 2

==53252== 2

==53253== 2

==53254== 2

==53255== 2

==53256== 2

==53257== 2

==53258== 2

==53259== 2

==53260== 2

==53261== 2

==53262== 2

==53263== 2

==53264== 2

==53265== 2

==53266== 2

==53267== 2

==53268== 2

==53269== 2

==53270== 2

==53271== 2

==53272== 2

==53273== 2

==53274== 2

==53275== 2

==53276== 2

==53277== 2

==53278== 2

==53279== 2

==53280== 2

==53281== 2

==53282== 2

==53283== 2

==53284== 2

==53285== 2

==53286== 2

==53287== 2

==53288== 2

==53289== 2

==53290== 2

==53291== 2

==53292== 2

==53293== 2

==53294== 2

==53295== 2

==53296== 2

==53297== 2

==53298== 2

==53299== 2

==53300== 2

==53301== 2

==53302== 2

==53303== 2

==53304== 2

==53305== 2

==53306== 2

==53307== 2

==53308== 2

==53309== 2

==53310== 2

==53311== 2

==53312== 2

==53313== 2

==53314== 2

==53315== 2

==53316== 2

==53317== 2

==53318== 2

==53319== 2

==53320== 2

==53321== 2

==53322== 2

==53323== 2

==53324== 2

==53325== 2

==53326== 2

==53327== 2

==53328== 2

==53329== 2

==53330== 2

==53331== 2

==53332== 2

==53333== 2

==53334== 2

==53337== 2

==53338== 2

==53343== 2

==53392== 2

==53395== 2

==53401== 2

==53451== 2

==53453== 4

==53456== 2

==53591== 2

==53596== 2

==53602== 2

==53616== 2

==53618== 4

==53622== 2

==53625== 2

==53642== 2

==53765== 2

==53766== 2

==53774== 2

==53788== 2

==55609== 2

==55610== 2

==55611== 2

==55612== 2

==55614== 2

==55615== 4

==55618== 2

==55628== 2

==55653== 2

==56060== 2

==56061== 2

==56062== 2

==56063== 2

==56064== 2

==56066== 2

==56067== 4

==56070== 2

==56084== 4