| Action on 8 Points | Group Name (Label) | \(|H^1(\mathbb{Q}, \mathbf{X}^\star(\mathbf{T}))|\) | Sha_C | 
|---|---|---|---|
8T1  | 
\(C_8\) (8,1)  | 
1  | 
1  | 
8T2  | 
\(C_4\times C_2\) (8,2)  | 
2  | 
2  | 
8T3  | 
\(C_2^3\) (8,5)  | 
2  | 
1  | 
8T4  | 
\(D_4\) (8,3)  | 
2  | 
1  | 
8T5  | 
\(Q_8\) (8,4)  | 
2  | 
4  | 
8T6  | 
\(D_8\) (16,7)  | 
1  | 
1  | 
8T7  | 
\(OD_{16}\) (16,6)  | 
1  | 
2  | 
8T8  | 
\(QD_{16}\) (16,8)  | 
1  | 
2  | 
8T9  | 
\(D_4\times C_2\) (16,11)  | 
2  | 
1  | 
8T10  | 
\(C_2^2:C_4\) (16,3)  | 
2  | 
1  | 
8T11  | 
\(Q_8:C_2\) (16,13)  | 
2  | 
2  | 
8T12  | 
\(\mathrm{SL}(2,3)\) (24,3)  | 
2  | 
1  | 
8T13  | 
\(A_4\times C_2\) (24,13)  | 
2  | 
1  | 
8T15  | 
\(Z_8:Z_8^\times\) (32,43)  | 
1  | 
2  | 
8T16  | 
\((C_8:C_2):C_2\) (32,7)  | 
1  | 
1  | 
8T17  | 
\(C_4\wr C_2\) (32,11)  | 
1  | 
1  | 
8T18  | 
\(C_2^2 \wr C_2\) (32,27)  | 
2  | 
1  | 
8T19  | 
\(C_2^3 : C_4\) (32,6)  | 
2  | 
1  | 
8T20  | 
\(C_2^3 : C_4\) (32,6)  | 
1  | 
1  | 
8T21  | 
\(C_2^3 : C_4\) (32,6)  | 
1  | 
1  | 
8T22  | 
\(C_2^3 : D_4\) (32,49)  | 
1  | 
1  | 
8T23  | 
\(\mathrm{GL(2,3)}\) (48,29)  | 
1  | 
1  | 
8T24  | 
\(S_4\times C_2\) (48,48)  | 
2  | 
1  | 
8T26  | 
\((C_4^2:C_2):C_2\) (64,134)  | 
1  | 
1  | 
8T27  | 
\(((C_8:C_2):C_2):C_2\) (64,32)  | 
1  | 
1  | 
8T28  | 
\((((C_4\times C_2):C_2):C_2):C_2\) (64,32)  | 
1  | 
1  | 
8T29  | 
\((((C_4\times C_2):C_2):C_2):C_2\) (64,138)  | 
2  | 
1  | 
8T30  | 
\((((C_4\times C_2):C_2):C_2):C_2\) (64,34)  | 
1  | 
1  | 
8T31  | 
\((((C_4\times C_2):C_2):C_2):C_2\) (64,138)  | 
1  | 
1  | 
8T32  | 
\(((C_2\times D_4):C_2):C_3\) (96,204)  | 
2  | 
1  | 
8T35  | 
\(C_2\wr C_2\wr C_2\) (128,928)  | 
1  | 
1  | 
8T38  | 
\(C_2\wr A_4\) (192,201)  | 
1  | 
1  | 
8T39  | 
\(C_2^3:S_4\) (192,1493)  | 
1  | 
1  | 
8T40  | 
\(Q_8:S_4\) (192,1494)  | 
1  | 
1  | 
Note. Transitive subgroups which are not listed do not correspond to Galois groups of CM-fields.