Action on 8 Points | Group Name (Label) | \(|H^1(\mathbb{Q}, \mathbf{X}^\star(\mathbf{T}))|\) | Sha_C |
---|---|---|---|
8T1 |
\(C_8\) (8,1) |
1 |
1 |
8T2 |
\(C_4\times C_2\) (8,2) |
2 |
2 |
8T3 |
\(C_2^3\) (8,5) |
2 |
1 |
8T4 |
\(D_4\) (8,3) |
2 |
1 |
8T5 |
\(Q_8\) (8,4) |
2 |
4 |
8T6 |
\(D_8\) (16,7) |
1 |
1 |
8T7 |
\(OD_{16}\) (16,6) |
1 |
2 |
8T8 |
\(QD_{16}\) (16,8) |
1 |
2 |
8T9 |
\(D_4\times C_2\) (16,11) |
2 |
1 |
8T10 |
\(C_2^2:C_4\) (16,3) |
2 |
1 |
8T11 |
\(Q_8:C_2\) (16,13) |
2 |
2 |
8T12 |
\(\mathrm{SL}(2,3)\) (24,3) |
2 |
1 |
8T13 |
\(A_4\times C_2\) (24,13) |
2 |
1 |
8T15 |
\(Z_8:Z_8^\times\) (32,43) |
1 |
2 |
8T16 |
\((C_8:C_2):C_2\) (32,7) |
1 |
1 |
8T17 |
\(C_4\wr C_2\) (32,11) |
1 |
1 |
8T18 |
\(C_2^2 \wr C_2\) (32,27) |
2 |
1 |
8T19 |
\(C_2^3 : C_4\) (32,6) |
2 |
1 |
8T20 |
\(C_2^3 : C_4\) (32,6) |
1 |
1 |
8T21 |
\(C_2^3 : C_4\) (32,6) |
1 |
1 |
8T22 |
\(C_2^3 : D_4\) (32,49) |
1 |
1 |
8T23 |
\(\mathrm{GL(2,3)}\) (48,29) |
1 |
1 |
8T24 |
\(S_4\times C_2\) (48,48) |
2 |
1 |
8T26 |
\((C_4^2:C_2):C_2\) (64,134) |
1 |
1 |
8T27 |
\(((C_8:C_2):C_2):C_2\) (64,32) |
1 |
1 |
8T28 |
\((((C_4\times C_2):C_2):C_2):C_2\) (64,32) |
1 |
1 |
8T29 |
\((((C_4\times C_2):C_2):C_2):C_2\) (64,138) |
2 |
1 |
8T30 |
\((((C_4\times C_2):C_2):C_2):C_2\) (64,34) |
1 |
1 |
8T31 |
\((((C_4\times C_2):C_2):C_2):C_2\) (64,138) |
1 |
1 |
8T32 |
\(((C_2\times D_4):C_2):C_3\) (96,204) |
2 |
1 |
8T35 |
\(C_2\wr C_2\wr C_2\) (128,928) |
1 |
1 |
8T38 |
\(C_2\wr A_4\) (192,201) |
1 |
1 |
8T39 |
\(C_2^3:S_4\) (192,1493) |
1 |
1 |
8T40 |
\(Q_8:S_4\) (192,1494) |
1 |
1 |
Note. Transitive subgroups which are not listed do not correspond to Galois groups of CM-fields.